

ELSEVIER

available at www.sciencedirect.comjournal homepage: www.ejconline.com

Prognosis in patients with hepatocellular carcinoma correlates to mutations of *p53* and/or *hMSH2* genes

Masatsugu Yano^{a,*}, Kiyohiro Hamatani^b, Hidefaka Eguchi^b, Yuko Hirai^b, Donald G. MacPhee^b, Keizo Sugino^a, Kiyohiko Dohi^a, Toshiyuki Itamoto^c, Toshimasa Asahara^c

^aDepartment of Surgery, Akane Foundation Tsuchiya General Hospital, 3-30 Nakajima-chou, Naka-ku, Hiroshima 730-8655, Japan

^bDepartment of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation (RERF), Hiroshima, Japan

^cDepartment of Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan

ARTICLE INFO

Article history:

Received 16 August 2006

Received in revised form

31 December 2006

Accepted 4 January 2007

Keywords:

p53 gene

hMSH2 gene

Hepatocellular carcinoma

Intrahepatic metastasis

Multicentric occurrence

ABSTRACT

Association of gene alterations and prognosis has not fully been elucidated in hepatocellular carcinoma (HCC). To clarify the relationship between *p53* and *hMSH2* mutations and prognosis, we analysed these mutations in 83 HCC cases and assessed their association with various clinicopathological factors. The 3-year disease-free survival (DFS) or overall survival (OS) rates in HCC patients with *p53* mutation and *p53* wild/*hMSH2* mutation significantly decreased compared with those without these mutations (14.3% and 37.5% versus 67.5% for DFS; 35.7% and 50.0% versus 96.4% for OS, respectively). In the multivariate analysis, categories by *p53* and *hMSH2* mutation status, and liver cirrhosis demonstrated statistical significances for DFS and OS. Moreover, the frequency of patients with *p53* and/or *hMSH2* mutations in intrahepatic metastasis (75.0%) was significantly higher than that in multicentric occurrence (14.3%). Thus, *p53* and *hMSH2* mutations will be useful for identifying subsets of HCC patients with poor prognosis.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, especially in Asia and Africa. Hepatocarcinogenesis seems to be a multi-step process where normal hepatocyte is transformed through hepatitis, cirrhosis and adenomatous hyperplasia into malignant tumour and then clinical liver cancer.¹ The various risk factors associated with the development of HCC are well known. They mainly include chronic HCV and HBV infection, heavy alcohol intake, prolonged exposure to aflatoxin B1 (AFB1) and metabolic liver diseases such as hemochromatosis. HCC development is closely associated with cirrhosis, and 80–90% of HCC are found in a chronic hepatitis or a cirrhotic liver.

The HCC, as well as precursor benign lesions, have been extensively studied in terms of genetic alteration in the past 10 years. As in other solid tumours, genetic abnormalities including genomic instability, gene alterations and aberrant expression of genes are accumulated during the carcinogenesis process. Indeed, chromosomal aberrations with loss of heterozygosity have been found in many cirrhotic livers and dysplastic nodules as well as HCC.^{1–3} Furthermore, genetic alterations including *p53* family, Wnt pathways and DNA mismatch repair genes have been detected in the cirrhotic and dysplastic nodules, and HCC.^{1,4–7}

P53 behaves as a multifunctional transcription factor involved in the control of cell cycle, programmed cell death, senescence, differentiation, DNA replication, DNA repair

* Corresponding author: Tel.: +81 82 243 9191; fax: +81 82 241 1865.

E-mail address: yano3masa@ybb.ne.jp (M. Yano).

0959-8049/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ejca.2007.01.032

and maintenance of genomic stability. P53 mutation is shown to be associated with the progression of HCC from an early to a more advanced stage.¹ In HCC developed from populations exposed to AFB1, specific TP53 mutation R249S is observed in more than 50% of the tumours.¹ Microsatellite instability (MSI) occurs in hepatocytes in some cases of chronic hepatitis, cirrhosis, and HCC.^{8,9} Alterations in DNA mismatch repair genes involved in MSI have also been found in HCC, especially HCV-associated HCC.¹⁰ In this way, genetic alterations involved in some of the multi-steps in carcinogenesis have been elucidated to some extent in recent years. Understanding of the molecular mechanisms of HCC development is very important for the improvement in prevention, treatment strategies and prognosis of HCC.

There have been great recent advances made in treatment of HCC, but the long-term prognosis after curative resection of HCC remains poor. One of the primary reasons for poor prognosis following curative resection is the high recurrence rate—roughly 20–30% within 1 year and 80% in 5 years.^{11,12} Intrahepatic recurrences arise from either intrahepatic metastases or multicentric occurrences. Recurrences due to intrahepatic metastases are generally found to be more aggressive than those from multicentric occurrences possibly because intrahepatic metastases are in a later stage of hepatocarcinogenesis than those of multicentric occurrences, which can be considered *de novo* tumours.^{13,14} Distinction of these two types of recurrence is important not only for understanding the biological process of liver carcinogenesis, but also for determining the optimal treatment for the patient.

Our previous study showed that most mutations of not only p53 but also hMSH2 genes occurred in moderately or poorly differentiated HCCs, suggesting that the presence of either a p53 or hMSH2 gene mutation is involved in the tumour progression of HCC.⁴ It was also suggested that lack of mutations in both p53 and hMSH2 closely correlates with the survival in HCC patients treated by surgery.⁴ Among DNA mismatch repair genes, there seems close interaction between p53 and hMSH2 proteins during carcinogenesis. First, p53 alterations are associated with altered expression of MMR protein, namely hMSH2 protein.^{7,15} Second, MSI inversely correlates with the presence of p53 mutation in tumours.¹⁶ Third, the presence of p53 response element in the hMSH2 proximal promoter suggests that p53 regulates hMSH2 expression.^{17,18} Fourth, p53 overexpression was associated with upregulation of hMSH2 protein.^{7,15} Therefore, we hypothesise that alterations of p53 and hMSH2 genes may be associated with not only survival in HCC patients but also recurrence of HCC following curative resection.

The purpose of this study is to examine the effects of deficiencies of p53 and hMSH2 gene function on the development of recurrences of HCC and overall survival following curative resection and establish a relatively simple predictive assay which may be of value in the clinical care of HCC patients.

2. Materials and methods

2.1. Subjects

We obtained tissue samples by surgical resection from 83 HCC patients, in all cases with their informed consent. Histopatho-

logic examination of haematoxylin-eosin stained, paraffin-embedded sections was performed for all patients. Tumours were histologically classified into well, moderately, and poorly differentiated HCC according to the criteria of Edmondson and Steiner.¹⁹ Histological grading is classified by acidophilic cytoplasm, nuclear/cytoplasm ratio and arrangement of neoplastic cell. No patient was lost to follow-up. The duration of follow-up period is 36–105 months. The patient group consisted of 67 men and 16 women (ages 48–77 years; mean 63.0 ± 7.0). Serological testing for serum hepatitis B virus surface antigen was positive in 13 patients (15.7%), and serum anti-hepatitis C virus antibody was present in 64 patients (77.1%); we also found that two patients (2.4%) were positive for both markers and four patients (4.8%) were negative for both. Fifty of our patients (60.2%) had cirrhosis. Times to relapse and survival were measured from the date of surgery. For survival analyses, one patient who died of disease complication within a month of surgery and three patients whose resections were non-curative were excluded.

2.2. DNA isolation

Samples of dissected tumours and surrounding non-cancerous tissues were frozen in liquid nitrogen and stored at -80°C until their DNA was extracted. Genomic DNA was digested with SDS and proteinase K prior to extraction with phenol-chloroform and precipitation with ethanol. After extraction, the purified DNA was stored at 4°C .

2.3. Single-strand conformational polymorphism (SSCP)

To screen the hMSH2 and p53 genes for variant sequences, we performed SSCP analysis by the method of Orita and colleagues²⁰, with particular emphasis on all coding exons of the hMSH2 gene as well as exons 5–8 of the p53 gene. The PC primers for amplification of each exon of hMSH2 and p53, and the polymerase chain reaction (PCR) conditions were as previously described.^{21,22} PCR-amplified fragments were heat denatured at 95°C for 10 min and then loaded on to 8% non-denaturing polyacrylamide gels maintained at 5°C ; the gels were dried and exposed to X-ray film. Samples exhibiting altered SSCP migration patterns were subjected to direct nucleotide sequencing.

2.4. Direct nucleotide sequencing

After purification of the PCR products, the products were used as templates for sequencing. For p53, the PCR products were denatured to produce single-stranded templates before fluorescence sequencing was performed in an automated sequencing system (ALFRED DNA Sequencer, Pharmacia LKB, Uppsala, Sweden). The dideoxy chain-termination method and the Thermo sequenase fluorescent labelled primer cycle sequencing kit were used (Amersham Life Science, Little Chalfont, England).

2.5. Statistics

The Chi-square or Fisher's exact test was used to evaluate the statistical significance of categorical variables. Cumulative

disease-free and survival rates were estimated by the method of Kaplan and Meier. The statistical significance of differences in the survival curves of different subgroups was analysed by the log-rank test. The overall survival of the study variables was assessed using the Cox proportional hazards model. Multiple group comparisons were conducted by one-way analysis of variance (ANOVA), followed by Tukey's honestly significant difference (HSD) test. These statistic analyses were performed with SPSS ver. 11.5J software.

3. Results

3.1. Mutations of the *p53* and *hMSH2* genes in HCC

We screened the genomic DNA from 83 HCC patients for somatic mutations in the *p53* and *hMSH2* genes by both PCR-SSCP and direct sequencing using primer sets shown in Table 1. Tables 2 and 3 summarise results of these mutations. We detected mutations of the *p53* gene in 16/83 patients (19.3%); 12 of the 16 mutations were missense, three were deletions and one was nonsense (Table 2). Among these *p53* mutations, we found triple missense mutations in one case (#57) and double ones in another (#69) (Table 2). On the other hand, point mutations of the *hMSH2* gene were found in 9/83 patients (10.8%) (Table 3). Only one patient had both *p53* and *hMSH2* gene mutations in his tumour.

3.2. Clinico-pathological characteristics by mutation status of *p53* and *hMSH2* genes

To assess the association of mutation status of *p53* and *hMSH2* genes with clinico-pathological characteristics, HCC patients were divided into three groups; namely, those with *p53* muta-

Table 2 – Mutations of *p53* gene in HCC

Case No.	Exon	Codon	Nucleotide alterations	Amino acid substitutions
4	6	220	TAT → TGT	Tyr → Cys
6	7	237	ATG → ATT	Met → Ile
25	5	176	TGC → TAC	Cys → Tyr
31	5	164	AAG → TAG	Lys → Stop
32	7	246	ATG → GTG	Met → Val
35	8	281	GAC → TAC	Asp → Tyr
39	6	189	1 bp deletion (frame shift)	
42	5	146	TGG → TGT	Trp → Cys
44	8	283	1 bp deletion (frame shift)	.
52	5	155	ACC → ATC	Thr → Ile
56	6	214	CAT → CGT	His → Arg
57	6	200	AAT → AGT	Asn → Ser
	6	205	TAT → TCT	Tyr → Ser
	6	207	GAT → GCT	Asp → Ala
68	7	238	TGT → CGT	Cys → Arg
69	5	173	GTG → ATG	Val → Met
	5	175	CGC → ATG	Arg → Cys
72	5	154–157	9 bp deletion	
76	5	155	ACC → ATC	Thr → Ile

tion ($n = 16$) including one case possessing both *p53* and *hMSH2* mutations, with *p53* wild/*hMSH2* mutation ($n = 8$), and with *p53* wild/*hMSH2* wild ($n = 59$). Presence or absence of intrahepatic metastasis (im) showed a significant heterogeneity in the distribution of number of patients among three groups ($P = 0.026$, chi-square test) (Table 4). In addition, when compared HCC patients harbouring *p53* and/or *hMSH2* mutations and those without mutations, there was a significant difference only for im ($P = 0.015$, Fisher's exact test) (Table 4).

Table 1 – Oligonucleotide primer sequences used for detection of alterations of *p53* and *hMSH2* genes

<i>p53</i>	Sense (5' → 3')	Antisense (5' → 3')	Length (bp)
Exon 5	TCCTACAGTACTCCCTGCC	GCCCCAGCTGCTACCATC	207
Exon 6	ACTGATTGCTCTAGGTCTG	AGTTGAAACCAAGACCTAG	143
Exon 7	AGGTTGGCTGACTGTACC	CTCTGACCTGGAGTCCTCC	120
Exon 8	CTATCCTGAGTAGTGGTAATC	GTCCTGCTGCTTACCTCGC	165
<i>hMSH2</i>	Sense (5' → 3')	Antisense (5' → 3') Length	(bp)
Exon 1	TCGGCCATTTCTCAACCA	TCCCTCCCCAGCACG	284
Exon 2	TTTTTGAGCAAAGAATCTGC	ACCTTATATGCCAAATACCAATC	162
Exon 3	TTAGGCTTCTCCTGGCAATC	CCTTCCTAGGCCTGGAATC	332
Exon 4	CTTATTCTTTCTCATAGTAGT	TTGTAATTACACATTATAATCCATG	221
Exon 5	GCTATAGGAAATCTCGATTTTA	TACCTAAAAAGGTTAAGGGCTC	193
Exon 6	TGAGCTTGCATTCTTCTATT	TGGGTAACTGCAGTTACATAAA	225
Exon 7	TTCAGATTGAATTAGTGGAAAGC	ACCTCATGTTTCCAGAGC	207
Exon 8	TTTGTTTACTACTTTCTTTAGG	AAGTATATTGCATACCTGATCC	148
Exon 9	TAATTCTGTCTTACCCATTATTT	CAACCTCAATGACCCATTC	204
Exon 10	TGGTAGGTATTATGGAATAC	ATCATGTTAAGAGCATTAGGG	264
Exon 11	TACACATTGCTTCTAGTACAC	AGCCAGGTGACATTCAAC	202
Exon 12	ATTATTCAGTATTCTGTGTAC	ACCCCCACAAAAGCCCAA	326
Exon 13	ATTATTAAGTAGCAGAAAAGCTT	AAGGGACTAGGAGATGCAC	287
Exon 14	GTTACACATTTTATGTGATGG	TTCTGAATTAGACTACTCC	329
Exon 15	TCTCATGCTGCCCCCTCAC	AAGTAAACTATGAAAACAAACTG	247
Exon 16	ACTAATGGGACATTCACATGTG	TCAATATTACCTTCATTCCATTAC	232

Table 3 – Mutations of MSH2 gene in HCC

Case No.	Exon	Codon	Nucleotide alterations	Amino acid substitutions
1	1	45	GCG → GTG	Ala → Val
14	7	390	CTT → TTT	Leu → Phe
22	7	390	CTT → TTT	Leu → Phe
	12	629	CAA → CGA	Gln → Arg
33	14	803	ACA → GCA	Thr → Ala
39	3	180	CCA → ACA	Pro → Thr
59	3	180	CCA → TCA	Pro → Ser
64	3	191	CAT → CGT	His → Arg
73	3	180	CCA → ACA	Pro → Thr
81	3	180	CCA → ACA	Pro → Thr

Except for the im, none of the other variables showed any difference among these groups.

3.3. Disease-free survival

We conducted univariate analysis for disease-free survival (DFS) in all 79 HCC patients with follow-up data available (Table 5). Presence or absence of p53 mutation showed a significant difference of DFS period (median: 5 versus 48 months, $P < 0.0001$, log-rank test). On the other hand, other variables including hMSH2 mutation did not show any significant differences for DFS. Since p53 mutation status was such a strong prognostic factor, stratification of HCC patients by p53 mutation status is required not to overlook other prognostic fac-

tors. We then analysed only for 65 HCC patients without p53 mutation. Notably, HCC patients with hMSH2 mutation showed a significantly shorter DFS than those without the mutation (18 versus 58 months, $P = 0.019$). In addition, liver cirrhosis showed a marginal significance among 65 HCC patients with wild p53 ($P = 0.075$, log-rank test).

Comparisons of DFS among three groups of HCC patients with p53 mutation ($n = 14$), those with p53 wild/hMSH2 mutation ($n = 8$) and those without mutation ($n = 57$) are shown using Kaplan–Meier survival curves (Fig. 1). The 3-year DFS rates of HCC patients were 14.3%, 37.5% and 67.5%, respectively.

In the multivariate analysis, categories by p53 and hMSH2 mutation status and liver cirrhosis that showed $P < 0.1$ in univariate analysis were included as explanatory variables (Table 6). HCC patients with p53 wild/hMSH2 mutation and those with p53 mutation showed 2.9- and 7.3-fold risks as compared with those without mutation ($P = 0.014$, $P < 0.001$, respectively). In addition, liver cirrhosis also showed a statistically significant difference ($P = 0.025$) in the analysis.

3.4. Association of recurrent patterns and mutation status of p53 and hMSH2 genes

Recurrence was detectable in 45 of 79 patients (57.0%). As shown in Table 7, frequency of recurrence in p53 and/or hMSH2 mutation group was significantly higher than that in the p53 wild/hMSH2 wild group (87.0% versus 44.6%, $P = 0.001$). Moreover, interestingly, the frequency of patients

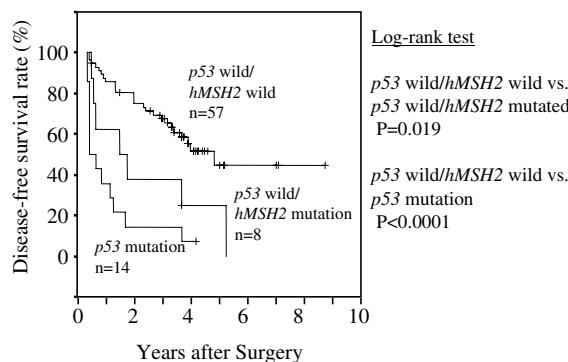
Table 4 – Clinico-pathological and epidemiological features stratified by p53 and hMSH2 mutation status

		p53 wild/ hMSH2 wild (Reference) (n = 59)	p53 mutation (n = 16)	p53 wild/ hMSH2 mutation n = 8	p*	p53 and/or hMSH2 mutation (n = 24)	p**
Gender	Female (n)	11	3	2	0.9	5	1
	Male (n)	48	13	6		19	
Age	≤69 yrs (n)	45	15	5	0.2	20	0.6
	≥70 yrs (n)	14	1	3		4	
Tumour size	<2 cm (n)	10	0	1	0.2	1	0.2
	>2 cm (n)	49	16	7		23	
Differentiation	Well (n)	11	0	1	0.2	1	0.2
	Moderately/Poorly (n)	48	16	7		23	
HBs Ab	Negative (n)	48	14	7	0.8	21	0.7
	Positive (n)	11	2	1		3	
HCV	Negative (n)	15	3	1	0.6	4	0.6
	Positive (n)	44	13	7		20	
Liver cirrhosis	Negative (n)	20	9	4	0.2	13	0.1
	Positive (n)	39	7	4		11	
Intrahepatic metastasis	Negative (n)	36	4	3	0.026	7	0.015
	Positive (n)	23	12	5		17	
Portal vein involvement (n)	Negative (n)	39	7	5	0.3	12	0.2
	Positive (n)	20	9	3		12	

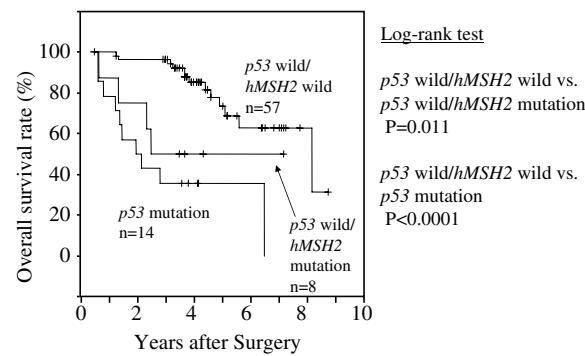
im, intrahepatic metastasis; vp, portal vein invasion.

* Chi-square test for 2×3 table.

** Fischer's exact test for 2×2 table (p53 wild/hMSH2 wild versus p53 and/or hMSH2 mutation).


Table 5 – Prognostic factors of disease-free and overall survival by uni variate analysis

Variables	All (n = 79)						Only p53 wild (n = 65)					
	No. of Patients	DFS		OS		No. of Patients	DFS		OS		Median (months)	P*
		Median (months)	P*	Median (months)	P*		Median (months)	P*	Median (months)	P*		
Gender	Female (n)	16	36	0.9	67	0.5	13	41	0.9	98	–	0.9
	Male (n)	63	44	–	–	–	52	48	–	–	–	–
Age	≤69 yrs (n)	61	40	0.4	78	0.8	48	47	0.8	–	–	0.9
	≥70 yrs (n)	18	48	–	98	–	17	48	–	98	–	–
Tumour size	<2cm (n)	10	44	0.2	–	0.3	10	44	0.5	–	–	0.6
	≥2cm (n)	69	38	–	78	–	55	48	–	98	–	–
Differentiation	Well (n)	12	44	0.5	67	0.7	12	44	0.9	67	–	0.7
	Moderately/Poorly (n)	67	41	–	98	–	53	58	–	98	–	–
HBs Ag	Negative (n)	65	40	0.9	78	0.3	53	48	0.9	98	–	0.4
	Positive (n)	14	44	–	–	–	12	47	–	–	–	–
HCV	Negative (n)	18	58	0.2	–	0.068	16	58	0.2	–	–	0.1
	Positive (n)	61	32	–	67	–	49	44	–	98	–	–
Liver cirrhosis	Negative (n)	33	47	0.3	–	0.037	24	–	0.075	–	–	0.008
	Positive (n)	46	32	–	61	–	41	41	–	67	–	–
im	Negative (n)	42	44	0.5	98	0.7	38	47	1.0	98	–	1.0
	Positive (n)	37	36	–	78	–	27	48	–	–	–	–
vp	Negative (n)	49	44	0.7	–	0.1	43	47	0.6	–	–	0.4
	Positive (n)	30	20	–	78	–	22	–	–	98	–	–
p53	Wild (n)	65	48	<0.0001	98	<0.0001	–	–	–	–	–	–
	Mutated (n)	14	5	–	24	–	–	–	–	–	–	–
hMSH2	Wild (n)	70	44	0.3	98	0.3	57	58	0.019	98	–	0.011
	Mutated (n)	9	21	–	–	–	8	18	–	30	–	–


DFS, disease-free survival; OS, overall survival; im, intrahepatic metastasis; vp, portal vein invasion.

A dash (–) indicates that the median survival could not be calculated because the last cumulative survival was greater than 50%.

* Log-rank test.

Fig. 1 – The Kaplan–Meier curves for disease-free survival for the three groups of HCC patients after a curative resection are shown: patients with *p53* mutation, those with *p53* wild/hMSH2 mutation and those with *p53* wild/hMSH2 wild.

Fig. 2 – The Kaplan–Meier curves for overall survival for the three groups of HCC patients after a curative resection are shown: patients with *p53* mutation, those with *p53* wild/hMSH2 mutation and those with *p53* wild/hMSH2 wild.

Table 6 – The multivariate analysis of disease-free survival by means of the Cox's proportional hazard model

Variables		Risk ratio (95% CI)	P
Gene mutations	<i>p53</i> wild/MSH2 wild	1 (reference)	
	<i>p53</i> wild/MSH2 mutation	2.929 (1.241–6.915)	0.014
	<i>p53</i> mutation	7.328 (3.470–15.474)	< 0.001
Liver cirrhosis	Negative	1 (reference)	
	Positive	2.106 (1.097–4.044)	0.025

with *p53* and/or *hMSH2* mutations in intrahepatic metastasis (75.0%) was significantly higher than that in multicentric occurrence (14.3%) ($P = 0.001$, respectively, Tukey's HSD test).

3.5. Overall survival

We also conducted univariate analysis for overall survival (OS) in all 79 HCC patients (Table 5). HCC patients with *p53* muta-

tion demonstrated a significantly shorter OS than those without (24 versus 98 months, $P < 0.0001$). In addition, liver cirrhosis also showed a significant difference ($P = 0.037$), while a marginal significance of OS was found for HCV status ($P = 0.068$).

We next analysed OS using only 65 HCC patients without *p53* mutation as described above. Remarkably, HCC patients with *hMSH2* mutation showed a significantly shorter OS compared with those without the mutation (30 versus 98 months, $P = 0.011$). Comparisons of OS among HCC patients with *p53* mutation ($n = 14$), those with *p53* wild/hMSH2 mutation ($n = 8$) and those without mutation ($n = 57$) are also shown in Fig. 2. The 3-year OS rates of HCC patients were 35.7%, 50.0% and 96.4%, respectively.

In the multivariate analysis, we included categories by *p53* and *hMSH2* mutation status, HCV and liver cirrhosis as explanatory variables that showed $P < 0.1$ in univariate analysis (Table 8). HCC patients with *p53* wild/hMSH2 mutation and those with *p53* mutation showed 6.8- and 14.5-fold risks compared with those without mutation ($P = 0.003$, $P < 0.001$, respectively). In addition, liver cirrhosis also revealed a statistically significant difference ($P < 0.001$). On the other hand, HCV did not show significance for OS in the analysis.

Table 7 – Recurrent pattern in HCC patients by status of *p53* or *hMSH2* mutation

	<i>p53</i> and/or <i>hMSH2</i> mutations	<i>p53</i> wild/ <i>hMSH2</i> wild	Frequency of mutated patients (%)	P
Recurrence	Intrahepatic recurrence			0.001*
	Intrahepatic metastasis (n)	12	4	0.001**
	Multicentric occurrence (n)	2	12	
	Unclassified (n)	1	4	<0.001***
	Distant metastasis (n)	5	5	
	Total (n)	20	25	
No recurrence		2	32	5.9]

* One way ANOVA for patients with intrahepatic recurrence.

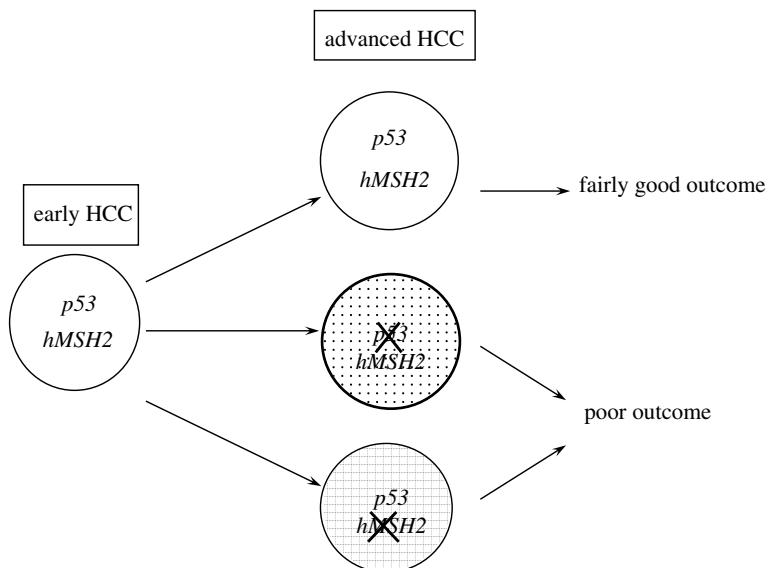
** Tukey's HSD test for intrahepatic metastasis versus multicentric occurrence.

*** Fisher's exact test for recurrence versus no recurrence.

Table 8 – The multivariate analysis of overall survival by means of the Cox's proportional hazard model

Variable		Risk ratio (95% CI)	p
Gene mutations	p53 wild/MSH2 wild	1 (reference)	
	p53 wild/MSH2 mutation	6.813 (1.894–24.505)	0.003
	p53 mutation	14.504 (5.240–40.147)	0.001
Liver cirrhosis	Negative	1 (reference)	
	Positive	6.544 (2.298–18.637)	0.001
HCV	Negative	1 (reference)	
	Positive	3.060 (0.764–12.255)	0.11

4. Discussion


This study presents the results of an analysis of the clinical features of hepatocellular carcinoma in 83 HCC patients with and without p53 and/or hMSH2 mutations. Interestingly, HCC patients without mutations of these genes showed a better prognosis including recurrence and survival than those with gene mutations. Furthermore, p53 or hMSH2 mutation status was also found to be associated with the pattern of recurrence. These findings suggest that mutations of these genes may be deeply involved in not only the progression of HCC but also the recurrence development of HCC.

A p53 or hMSH2 gene mutation may accelerate the progressive development of HCC by a 100–600-fold increase in the rate of spontaneous mutations and accumulation due to defects in mismatch repair.^{23,24} It is of course also possible that the loss of a mismatch repair function is likely to lead to high frequencies of ectopic recombination^{25,26}; this may then lead to genomic rearrangement(s) and, as a result, activation of an oncogene or inactivation of a tumour suppressor gene, resulting in the acceleration of progression of HCC.

On the other hand, although p53 or hMSH2 mutation were not detected in non-malignant cells in cancer tissue, prognosis of the patients was worse than that without the mutations. This may be because the genome in normal cells around tumours is more unstable in HCCs with p53 or hMSH2 mutation than those without these mutations, influencing the recurrence or survival. The possibility cannot be excluded that a few normal cells with p53 or hMSH2 mutation have existed within cancer tissue though we cannot detect these mutations by our assay system.

Cells in a tumour may well become resistant to chemotherapeutic agents following their acquisition of mutations that affect the p53 or hMSH2 genes^{27–29}; this is because it should be much easier for cells that have a disrupted mismatch repair system to acquire a drug resistance phenotype by virtue of the increased mutability which stems from their genomic instability. Thus there may be significant differences in responsiveness to chemotherapy in HCC patients with p53 and/or hMSH2 mutations and without these mutations, and this could well lead to their experiencing significantly different survival periods following a relapse.

The recurrent tumours identified in this study were classified in accordance with the recommendations of the Liver Cancer Study Group of Japan in their paper on the classification of primary liver cancers.³⁰ Thus the term intrahepatic metastasis is used to describe: 1) tumours that can be clearly seen as having grown from portal vein tumour thrombi, 2) tumours that surround a large main tumour with multiple satellite nodules, and 3) a small solitary tumour which is close to the main tumour and is either histologically similar to or less differentiated than the main tumour. Multiple HCC lesions that cannot be described as metastases under the above criteria are believed to represent potential multicentric occurrences; such tumours are separately recorded as 'de novo carcinogenesis'. However, there may often be recurrent tumours that are difficult to classify as either intrahepatic metastases or multicentric

Fig. 3 – A proposed model of hepatocellular carcinogenesis with emphasis on progression in relation to mutations of p53 and hMSH2 genes.

occurrences. Several studies have tried to examine the possible histologic¹⁴ and genetic^{31–33} differential diagnoses, but this is still impossible. In our present study, almost all of the cases in which we found a p53 and/or an hMSH2 gene mutation appeared to relapse within 2 years of surgery as a consequence of intrahepatic metastasis. Although we noted that the outcomes were reasonably good in the great majority of the p53 wild/hMSH2 wild cases, there were a few cases involving multicentric occurrence that led to relapses occurring 3-plus years after surgery. Frequency of multicentric occurrence was also higher in p53 wild/hMSH2 wild cases than in these mutation positive cases. These findings suggest that gene alterations other than mutations of p53 and hMSH2 may be involved in recurrence and survival. So, gene alterations, especially on DNA repair system including other mismatch repair genes, need to be analysed.

Fig. 3 summarises the situation as we found it in patients with HCC. There seemed to be relatively few mutations in either p53 or hMSH2 in early-stage HCCs. The early-stage HCCs then developed into advanced-stage HCCs, which were more than 2 cm in diameter and were either poorly or moderately de-differentiated. The outcome tended to be pretty poor in those HCC patients whose tumours showed clear evidence of p53 or hMSH2 mutations, whereas in patients whose tumours had no mutation of either gene the outcome tended to be somewhat better.

Conflict of interest statement

None declared.

Acknowledgement

The authors thank Dr. K. S. Iwamoto, UCLA, for discussions. We are also grateful to: Shiro Yano and Chiyo Saitoh for excellent technical help.

This is part of a collaborative study between the liver disease projects of the Department of Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University and the Radiation Effects Research Foundation (RERF), Hiroshima, Japan. RERF is a private, non-profit foundation funded equally by the Japanese Ministry of Health and Welfare and the U.S. Department of Energy through the National Academy of Sciences.

REFERENCES

1. Suriawinata A, Xu R. An update on the molecular genetics of hepatocellular carcinoma. *Semin Liver Dis* 2004;24:77–88.
2. Sun M, Eshleman JR, Ferrell LD, et al. An early lesion in hepatic carcinogenesis: Loss of heterozygosity in human cirrhotic livers and dysplastic nodules at the 1p36-p34 region. *Hepatology* 2001;33:1415–24.
3. Yeh SH, Chen PJ, Shau WY, et al. Chromosomal allelic imbalance evolving from liver cirrhosis to hepatocellular carcinoma. *Gastroenterology* 2001;121:699–709.
4. Yano M, Asahara T, Dohi K, Mizuno T, Iwamoto KS, Seyama T. Close correlation between a p53 or hMSH2 gene mutation in the tumor and survival of hepatocellular carcinoma patients. *Int J Oncol* 1999;14:447–51.
5. Katiya S, Dash BC, Thakur V, Guptan RC, Sarin SK, Das BC. P53 tumor suppressor gene mutations in hepatocellular carcinoma patients in India. *Cancer* 2000;88:1565–73.
6. Wang L, Bani-Hani A, Montoya D, et al. hMLH1 and hMSH2 expression in human hepatocellular carcinoma. *Int J Oncol* 2001;19:567–70.
7. Hussein MR. Alterations of p53, Bcl-2, and hMSH2 protein expression in the cirrhotic, macroregenerative, dysplastic nodules and hepatocellular carcinomas in upper Egypt. *Liver Int* 2004;24:552–60.
8. Salvucci M, Lemoine A, Saffroy R, et al. Microsatellite instability in European hepatocellular carcinoma. *Oncogene* 1999;18:181–7.
9. Macdonald GA, Greenson JK, Saito K, Cherian SP, Appelman HD, Boland CR. Microsatellite instability and loss of heterozygosity at DNA mismatch repair gene loci occurs during hepatic carcinogenesis. *Hepatology* 1998;28:90–7.
10. Zekri AR, Sabry GM, Bahnassy AA, Shalaby KA, Abdel-Wahab S, Zakaria S. Mismatch repair genes (hMLH1, hPMS1, hPMS2, GTBP/hMSH6, hMSH2) in the pathogenesis of hepatocellular carcinoma. *World J Gastroenterol* 2005;11:3020–6.
11. Shimada M, Takenaka K, Gion T, et al. Prognosis of recurrent hepatocellular carcinoma: A 10-year surgical experience in Japan. *Gastroenterology* 1996;111:720–6.
12. Sugimachi K, Maehara S, Tanaka S, Shimada M, Sugimachi K. Repeat hepatectomy is the most useful treatment for recurrent hepatocellular carcinoma. *J Hepatobiliary Pancreat Surg* 2001;8:410–6.
13. Kumada T, Nakano S, Takeda I, et al. Patterns of recurrence after initial treatment in patients with small hepatocellular carcinoma. *Hepatology* 1997;25:87–92.
14. Shimada M, Hamatsu T, Yamashita Y, et al. Characteristics of multicentric hepatocellular carcinomas: Comparison with intrahepatic metastasis. *World J. Surg.* 2001;25:991–5.
15. Hussein MR, Hassan M, Wood GS. Morphological changes and apoptosis in radial growth phase melanoma cell lines following ultraviolet-B irradiation. *Am J Dermatopathol* 2003;25:466–72.
16. Karachristos A, Liloglou T, Field JK, Deliogiorgi E, Kouskouni E, Spandidos DA. Microsatellite instability and p53 mutations in hepatocellular carcinoma. *Mol Cell Biol Res Commun* 1999;2:155–61.
17. Scherer SJ, Welter C, Zang KD, Dooley S. Specific in vitro binding of p53 to the promoter region of the human mismatch repair gene hMSH2. *Biochem Biophys Res Commun* 1996;221:722–8.
18. Warnick CT, Dabbas B, Ford CD, Strait KA. Identification of a p53 response element in the promoter region of the hMSH2 gene required for expression in A2780 ovarian cancer cells. *J Biol Chem* 2001;276:27363–70.
19. Edmondson HA, Steiner PE. Primary carcinoma of the liver. A study of 100 cases among 48,900 necropsies. *Cancer* 1954;7:462–503.
20. Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutation and DNA polymorphisms using the polymerase chain reaction. *Genomics* 1989;5:874–9.
21. Oda T, Tsuda H, Scarpa A, Skakmoto M, Hirohashi S. p53 gene mutation spectrum in hepatocellular carcinoma. *Cancer Res* 1992;52:6358–64.
22. Kobayashi K, Matsushima M, Koi S, et al. Mutational analysis of mismatch repair genes, hMLH1 and hMSH2, in sporadic endometrial carcinomas with microsatellite instability. *Jpn J Cancer Res* 1996;87:141–5.

23. Bhattacharyya NP, Skandalis A, Ganesh A, Groden J, Meuth M. Mutator phenotypes in human colorectal carcinoma cell lines. *Proc Natl Acad Sci USA* 1994;91:6319–23.
24. Hanford MG, Rushton BC, Gowen LC, Farber RA. Microsatellite mutation rates in cancer cell lines deficient or proficient in mismatch repair. *Oncogene* 1998;16:2389–93.
25. Wind N, Dekker M, Berns A, Radman M, Riele H. Inactivation of the mouse *Msh2* gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. *Cell* 1995;82:321–30.
26. Surtees JA, Argueso JL, Alani E. Mismatch repair proteins: key regulators of genetic recombination. *Cytogenet Genome Res* 2004;107:146–59.
27. Chan KT, Lung ML. Mutant p53 expression enhances drug resistance in a hepatocellular carcinoma cell line. *Cancer Chemother Pharmacol* 2004;53:519–26.
28. Rellecke P, Kuchelmeister K, Schachenmayr W, Schlegel J. Mismatch repair protein hMSH2 in primary drug resistance in *in vitro* human malignant gliomas. *J Neurosurg* 2004;101:653–8.
29. Lin X, Howell SB. DNA mismatch repair and p53 function are major determinants of the rate of development of cisplatin resistance. *Mol Cancer Ther* 2006;5:1239–47.
30. Liver Cancer Study Group of Japan. Classification of Primary Liver Cancer. Tokyo: Kanehara; 1997, p.38.
31. Yamamoto T, Kajino K, Kudo M, Sasaki Y, Arakawa Y, Hino O. Determination of the clonal origin of multiple human hepatocellular carcinomas by cloning and polymerase chain reaction of the integrated hepatitis B virus DNA. *Hepatology* 1999;29:1446–52.
32. Ng IO, Guan XY, Poon RT, Fan ST, Lee JM. Determination of the molecular relationship between multiple tumor nodules in hepatocellular carcinoma differentiates multicentric origin from intrahepatic metastasis. *J Pathol* 2003;199:345–53.
33. Morimoto O, Nagano H, Sakon M, et al. Diagnosis of intrahepatic metastasis and multicentric carcinogenesis by microsatellite loss of heterozygosity in patients with multiple and recurrent hepatocellular carcinomas. *J Hepatol* 2003;39:215–21.